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Abstract

A simple and computationally inexpensive approach is presented for obtaining the maximum load factor of an elastic

structure considering reduction of load-carrying capacity due to inevitable initial imperfections. The structure has a

stable bifurcation point if no initial imperfection exists. An antioptimization problem is formulated for minimizing the

maximum loads reduced by the most sensitive imperfection within the convex bounds on the imperfections of nodal

locations and nodal loads. The maximum loads may be defined by bifurcation points or deformation constraints. A

problem of simultaneous analysis and design with energy method is formulated to avoid laborious nonlinear path-

following analysis. The stable bifurcation point is located by minimizing the load factor under constraint on the lowest

eigenvalue of the stability matrix. It is shown in the examples that a minor imperfection that is usually dismissed is very

important in evaluating the maximum load of a flexible structure. � 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Buckling analysis; Imperfection sensitivity; Minor imperfection; Antioptimization; Convex model; Simultaneous analysis

and design

1. Introduction

The lower bound of the maximum load factor of a geometrically nonlinear structure that exhibits bi-
furcation-type instability may be evaluated based on the most critical mode of imperfection that maximizes
the reduction of the load carrying capacity under constraint on the norm of the imperfection. There have
been several studies for finding the most critical mode of imperfections for simple and coincident unstable
symmetric bifurcation points (Ho, 1974; Ikeda and Murota, 1990) based on a perturbation approach
(Koiter, 1945; Thompson and Hunt, 1973). For a symmetric structure subjected to symmetric proportional
loads, which is called symmetric system for brevity, an antisymmetric imperfection is classified as ma-
jor imperfection or first-order imperfection in the sense that the imperfection has direct effect on the de-
rivative of the total potential energy in the direction of the buckling mode. Ohsaki et al. (1998) presented an
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optimization method considering the reduction of maximum load factor due to the most critical mode of
major imperfection.
It is laborious, however, to find the buckling load factor by a nonlinear path-following analysis and to

obtain the most critical imperfection based on a perturbation approach because the formulations are
complicated and are difficult to implement in a finite element analysis program. In addition to this difficulty,
the maximum load factor is estimated at the perfect system using sensitivity informations; i.e. a moderately
large imperfection is not considered.
Ohsaki (2000) presented an algorithm for obtaining optimum designs of symmetric systems with coin-

cident critical points, and showed that optimization does not always increase imperfection sensitivity. For a
symmetric system, a symmetric imperfection is classified as minor imperfection or second-order imper-
fection (Roorda, 1968) in the sense that the imperfection does not have direct effect on the derivative of the
total potential energy in the direction of the buckling mode. For a minor imperfection, the critical point of
an imperfect system remains to be a bifurcation point, which is contrary to the fact that the critical point of
an imperfect system corresponding to a major imperfection turns out to be a limit point. Although the
imperfection sensitivity of a bifurcation load factor corresponding to a minor imperfection is bounded,
Ohsaki (2000) showed that a minor imperfection is sometimes more critical than major imperfections if
moderately large imperfection is allowed.
One approach for avoiding difficulty in numerical implementation for obtaining the most critical im-

perfection is to use a stochastic approach. In this case, however, the probability distribution of initial
imperfection should be given appropriately, preferably based on experiments. The convex model is very
effective for the case where stochastic approach cannot be used (Ben-Haim and Elishakoff, 1990). It con-
siders uncertainty within known bounds on the parameters. Elishakoff et al. (1994c) applied the convex
model to stability analysis of imperfection sensitive columns on elastic foundation, where prebuckling
deformation can be neglected in buckling analysis and the buckling load factor is linearized with respect to
the imperfection parameters. They compared the results by a stochastic approach and the convex model,
and showed that only few modes are necessary for buckling analysis and for modeling imperfections.
Elishakoff et al. (1994a) presented a method for obtaining the most critical imperfection for elastic static
problem using the antioptimization approach to obtain the possible worst case values of the parameters.
They considered uncertainty in loads as well as the nodal locations. Uncertainty in the elastic modulus has
been considered in Elishakoff et al. (1994b). Pantelides (1996a) introduced imperfections in geometry and
material properties. Pantelides (1996b) used elliptic bounds for buckling analysis of columns on uncertain
elastic foundation. A convex model for buckling of bars connected by springs are discussed in Pantelides
(1995).
The method called simultaneous analysis and design, which is abbreviated as SAND, is very effective for

reducing the computational cost for path-following analysis that should be carried out at each step of
optimization or antioptimization of geometrically nonlinear structures. It considers the state variables as
well as the design variables as independent variables. Haftka (1985) incorporated the equilibrium equations
into the objective function by using the interior penalty functions, and presented an efficient approach for
avoiding illconditioning of the Hessian of the Lagrangian or the objective function. His approach has been
shown to be applicable to truss topology optimization problems (Sankaranarayanan et al., 1994). The
method with direct incorporation of the equilibrium equations as equality constraints has also been pre-
sented (Wu and Arora, 1987; Orozco and Ghattas, 1997).
Contrary to imperfection-sensitive structures such as cylindrical shells and stiffened plates, the bifur-

cation point of a column that has a stable postbuckling path disappears due to a small major imperfection;
e.g. antisymmetric imperfection of a symmetric system. A question then arises how the maximum load
factor of such stable structures should be defined. One approach is to allow deformation along the bi-
furcation path that has the load factor above the bifurcation load (Pietrzak, 1996). In this case, the
maximum load factor may be determined by the constraints on displacements and/or stresses. The anti-
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symmetric component of initial imperfection, however, may happen to be very small, and sudden defor-
mation may occur near the bifurcation point. Therefore in some situations it may be unsafe to allow
loading along the bifurcation path, and the bifurcation load factor should be used for defining the maxi-
mum load.
In this paper, a simple and numerically inexpensive approach is presented for determining the maximum

load factors of imperfect elastic structures considering imperfections of nodal locations and nodal loads. It
is shown in the examples that the reduction of the maximum loads defined by displacement constraints is
very small if a major imperfection is considered and moderately large displacements are allowed. Therefore,
minor imperfections should be considered in defining the most critical mode of imperfection. An antiop-
timization problem is formulated so as to minimize the bifurcation load factor within the convex bounds on
the imperfection parameters. A relaxed problem is solved based on the SAND, where the bifurcation load is
determined by minimizing the load factor under constraint on the lowest eigenvalue of the stability matrix
allowing imperfections of nodal loads. This way, laborious nonlinear path-following analysis is successfully
avoided. It is shown in the examples of a 20-bar truss that the most critical mode of minor imperfection can
be successfully obtained by the proposed approach.

2. Maximum load factor of an imperfect system

Consider a finite dimensional elastic structure subjected to quasi-static proportional loads P defined by
the load factor K as P ¼ Kp, where p is the specified vector of load pattern. The vector of nodal dis-
placements is denoted by U ¼ fUig. Let n denote an imperfection parameter that represents any type of
imperfection including initial dislocation of nodes, distortion of cross-sectional shape of a member, etc. The
total potential energy PðU ;K; nÞ is defined as

PðU ;K; nÞ ¼ HðU ; nÞ � KpT ðnÞU ð1Þ

where HðU ; nÞ is the strain energy which is assumed not to depend explicitly on K. This assumption is valid
for a proportionally loaded structure modeled by a finite element formulation using nodal displacements as
variables for defining deformation.
The equivalent nodal force FðU ; nÞ ¼ fFjðU ; nÞg is defined by

FjðU ; nÞ ¼ oH
oUj

ðj ¼ 1; 2; . . . ; nÞ ð2Þ

where n is the number of degrees of freedom. The equilibrium equations are written as

FjðU ; nÞ ¼ KpjðnÞ ðj ¼ 1; 2; . . . ; nÞ ð3Þ

In the following, the arguments U , K and n are omitted except the case where dependence on those
variables is important. The stability matrix S, which is the tangent stiffness matrix used for nonlinear
analysis, is given as

S ¼ o2H
oUioUj

� �
ð4Þ

The rth eigenvalue kr and eigenvector Ur of S are obtained from

SUr ¼ krUr; ðr ¼ 1; 2; . . . ; nÞ ð5Þ

The critical load factor Kc corresponds to k1 ¼ 0, where k1 is the lowest eigenvalue.
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Define a as

a ¼
Xn

i¼1

o2P
onoUi

U1i ð6Þ

where U1i is the ith component of U1. The major and minor imperfections are characterized by a 6¼ 0 and
a ¼ 0, respectively (Roorda, 1968). For a symmetric system, the prebuckling deformation is symmetric and
the bifurcation mode is antisymmetric. In this case, a symmetric and antisymmetric imperfections corre-
spond to minor and major imperfections, respectively. Figs. 1 and 2 illustrate the relation between K and a
representative antisymmetric displacement component U for the cases of major and minor imperfections,
respectively. It is seen from Fig. 1 that K increases above the bifurcation load factor Kc of the perfect system
if a major imperfection exists. For the case of minor imperfection, as shown in Fig. 2, an imperfect system
still has a bifurcation point, and the bifurcation load factor may increase or decrease depending on the sign
of the imperfection parameter.
Since antisymmetric components of deformation along the bifurcation path of the stable bifurcation

point may be very large, the maximum load should be defined in view of the stresses and/or displacements.
A question arises whether it is safe to expect loads above the bifurcation load. Although a critical point
does not exist for a structure with a major imperfection, the imperfection may happen to be extremely
small, and the structure may reach a bifurcation point that causes sudden dynamic antisymmetric mode of
deformation. Therefore, the maximum load factor of a structure exhibiting stable bifurcation may be de-
fined by either of the following criteria:
C1 Bifurcation load factor.
C2 Load factor corresponding to the specified limits on stresses and/or displacements.
Consider a case where the maximum load factor is defined by the upper bound �UU of the displacement

component U for a system illustrated in Figs. 1 and 2. It is observed from Fig. 1 that the magnitude of
reduction of the maximum load factor due to a major imperfection is very large for a small range of �UU , e.g.,
�UU ¼ Ua, but it decreases as �UU is increased to, e.g., �UU ¼ Ub. For a minor imperfection, the magnitude of
reduction does not strongly depend on �UU , and it is larger than that to a major imperfection if �UU is mod-
erately large, e.g., �UU ¼ Ub. Therefore, for the case where C2 is used, the most critical mode of imperfection
will be a major imperfection if �UU is sufficiently small, otherwise the maximum load factor should be defined
by a minor imperfection. If C1 is used, the most critical imperfection should be a minor imperfection
because the bifurcation point disappears if a major imperfection exists. In this paper, we consider a flexible

Fig. 1. Equilibrium paths of perfect and imperfect systems corresponding to major imperfection.
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system allowing a moderately large deformation. In this case, minor imperfection plays a key role in
evaluating the maximum load factors of the imperfect systems considering both criteria C1 and C2. A good
approximate maximum load factor and the corresponding most critical mode of imperfection will be found
by minimizing the bifurcation load factor even for the case of C2.
Summarizing the discussion above, we define the most critical imperfection by reduction of the bifur-

cation load factor due to minor imperfections based on the following reasons:
(1) Even for a stable bifurcation, reaching the bifurcation point should be avoided because it leads to a

sudden dynamic deformation. Since the bifurcation point disappears if a major imperfection exists, the
most critical imperfection for this case is a minor imperfection.
(2) Since we consider a flexible structure and allow moderately large deformation, the maximum load

defined by deformation constraints is dramatically reduced by minor imperfections rather than major
imperfections, and sensitivity of the maximum load is almost equivalent to that of the bifurcation point.

3. Antioptimization problem

If we consider only symmetric systems, imperfections can easily be divided into major and minor im-
perfections based on the symmetry conditions. For a more complicated structure without explicit symmetry
properties subjected to nonsymmetric loads, classification of imperfection is not straightforward. In this
section, a method is presented for obtaining most critical minor imperfection without carrying out any
preprocessing for orthogonalization or classification of imperfection modes. Note that the most critical
major imperfection of an unstable symmetric bifurcation point may be found directly by the perturbation
approaches (Ho, 1974; Ikeda and Murota, 1990). There has been no study, however, for finding most
critical imperfection of a stable symmetric bifurcation point.
Let ni ði ¼ 1; 2; . . . ;mÞ denote the vector of ith set of imperfection parameters including any possible type

of imperfection such as nodal locations and cross-sectional areas. The norm of ni is denoted by eiðniÞ which
is a convex function of ni. Suppose an upper bound �eei is given for eiðniÞ by an approach similar to that of
the convex model (Ben-Haim and Elishakoff, 1990). In the formal convex model, the objective function is
linearized by utilizing the first order sensitivity information, and the optimal or antioptimal solution is
uniquely determined. In this paper, however, the nonlinear buckling load factor is directly used as objective
function in order to rigorously incorporate the geometrical nonlinearity.

Fig. 2. Equilibrium paths of perfect and imperfect systems corresponding to minor imperfection.
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The set of vectors ni is divided into major imperfections nIi and minor imperfections nIIi . The val-
ues corresponding to major and minor imperfections are indicated by superscripts ð ÞI and ð ÞII, respec-
tively; e.g. the upper bound for eIIi ðn

II
i Þ is denoted by �eeIIi . Let nII denote the vector that consists of all the

elements of the vectors nIIi , ði ¼ 1; 2; . . . ;mIIÞ. The maximum load of the imperfect system considering re-
duction due to the most critical mode of minor imperfection is defined as the solution of the following
optimization problem:

P1 : minimize KcðnIIÞ ð7Þ
subject to eIIi ðn

II
i Þ6�eeIIi ði ¼ 1; 2; . . . ;mIIÞ ð8Þ

This type of problem for finding the minimum load factor is called antioptimization problem (Elishakoff
et al., 1994a). The variables in P1 are nIIi , ði ¼ 1; 2; . . . ;mIIÞ.
As noted above, the objective function of P1 is not linearized with respect to the imperfection para-

meters; i.e. the rigorous nonlinear formulation is used for Kc. P1 may be solved by using an appropriate
gradient-based optimization algorithm if sensitivity coefficients of the critical load factors can be found
(Ohsaki, 2000). However, KcðnIIÞ corresponding to the given set of nIIi should be determined by tracing the
fundamental equilibrium path at each iterative step of optimization. Therefore, the formulation of P1 is
computationally expensive.
If we fix nII and only consider major imperfections, the region in the ðK � UÞ-space where k16 0 is

satisfied is as indicated by feasible region in Fig. 3, where U is a representative generalized displacement
generated due to existence of a major imperfection. For a symmetric system, U represents an antisymmetric
component of deformation. The thick curve in Fig. 3 is the bifurcation path of the perfect system, and thin
curves are equilibrium paths of imperfect systems. The dotted curves indicate unstable equilibrium points.
Note that the region bounded by the dashed curve ABC is feasible for the constraint k16 0. Since we
consider the case where the perfect system exhibits stable bifurcation, the feasible region in the vicinity of
the bifurcation point is convex with respect to U and K. Hence, the buckling load factor is found by
minimizing K with respect to nIi under constraint of k16 0. We further minimize K with respect to nIIi to
obtain the most sensitive imperfection. Since both processes correspond to minimization of K, those can be
carried out simultaneously.

Fig. 3. Feasible region for the eigenvalue constraint.
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In order to reduce the computational cost for geometrically nonlinear path-following analysis, nodal
displacements are also considered as variables of the optimization problem, and analysis and optimization
are simultaneously carried out. If we use the most simple formulations of SAND, the state variables U are
iteratively updated to satisfy the equality constraints. The optimization problem with equality constraints,
however, are computationally costly. A two stage algorithm can be used for reducing the computational
cost (Wu and Arora, 1987). In this case, a special algorithm should be implemented for optimization. If the
equality constraints are included in the objective function as penalty terms (Haftka, 1985), the optimization
problem can be solved by simply using an optimization package.
In this study, we consider U as variables which are the same level as nII and relax P1 allowing imper-

fections in nodal loads. Therefore, we do not need the exact equilibrium state corresponding to the perfect
nodal loads. The ranges of the nodal loads are given as

KpLj 6 Pj 6KpUj ðj ¼ 1; 2; . . . ; nÞ ð9Þ

where pLj and pUj are the specified lower and upper bounds, respectively. Suppose the case where the upper
bound DP for the error in the load is proportional to K as DP ¼ KDp. Eq. (9) is then written as

Kðpj � DpÞ6 Pj 6Kðpj þ DpÞ ðj ¼ 1; 2; . . . ; nÞ ð10Þ

Let n denote the vector consisting of ni including minor and major imperfections. From Eq. (2), the internal
nodal forces F	ðU ; nÞ ¼ fF 	

j ðU ; nÞg equivalent to the displacements U of an imperfect system are defined by

F 	
j ðU ; nÞ ¼ oHðU ; nÞ

oUj
ðj ¼ 1; 2; . . . ; nÞ ð11Þ

where ð Þ	 indicates a function of U and n. F 	
j is then calculated for each trial displacement vector during

the optimization process.
The optimization problem to be solved is formulated as follows for finding the minimum value of K

under constraints on the norms of imperfections and the lowest eigenvalue k	
1ðU ; nÞ of the stability matrix:

P2 : minimize K ð12Þ
subject to eiðniÞ6�eei ði ¼ 1; 2; . . . ;mÞ ð13Þ

Kðpj � DpÞ6 F 	
j ðU ; nÞ6Kðpj þ DpÞ ðj ¼ 1; 2; . . . ; nÞ ð14Þ

k	
1ðU ; nÞ6 0 ð15Þ

The variables of this problem are U , n and K. Only computation of F 	
i ðU ; nÞ and k	

1ðU ; nÞ is needed for the
current value of U and n at each iterative step of optimization, and the laborious path-following analysis is
not needed.

4. Examples

Consider a column-type 20-bar plane truss as shown in Fig. 4. The lengths of members in x- and y-
directions are 100 and 200 cm, respectively. The cross-sectional areas are 2.0 cm2 for all the truss members.
The proportional loads in the negative y-direction at nodes 7 and 8 are given as Kp, where p ¼ 98 kN. The
elastic modulus is 205.8 GPa. The axial strain is defined by the Green’s strain. Optimization is carried out
by IDESIGN Ver. 3.5 (Arora and Tseng, 1987), where the sequential quadratic programming is used, and
the gradients of the objective and constraint functions are computed by the finite difference approach. Very
strict convergence criteria have been assigned for obtaining rigorous optimal solutions; i.e. the constraint
violation is limited to 1:0
 10�5, and the difference of the objective values in two consecutive steps should
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be less than 1:0
 10�6. The computational cost will be reduced if larger limits are used in practical situ-
ation. Computation has been carried out on a personal computer with AMD Athron 1.0 GHz.
The vector n of the imperfection parameters consists of the coordinates of all the nodes except two

supports. Note that n includes minor and major imperfections. Therefore the size of n is equal to n. The
norm ~eeðnÞ of the imperfection is defined as

~eeðnÞ ¼ 1
n

ffiffiffiffiffiffiffiffi
nTn

q
ð16Þ

The upper bound Dp for the error in the nodal loads is 1% of p. Note that the imperfection of loads is
assumed to exist in all the displacement components. The number of variables n, U and K in P2 is 33. The
extensional stiffness of each spring attached at nodes 7 and 8 is denoted by j. We consider two cases with
j ¼ 0 and j ¼ 102:9 kN/m which are referred to as column-type truss and laterally supported truss, re-
spectively.
Let UA and US denote the lowest antisymmetric and symmetric linear buckling modes, respectively, of

the perfect system. Imperfection sensitivity properties are first investigated for imperfections in the direc-
tions of UA and US which correspond to major and minor imperfections, respectively. Imperfection modes
may also be defined by the eigenmodes Ur of S at the critical point. Since the bifurcation mode U1 is
antisymmetric and the lowest symmetric mode of S does not have any physical meaning, and since the
prebuckling deformation is not very large for a perfect column-type trusses, it is reasonable to define the
imperfection by the linear buckling modes.
The upper bounds 100 and 300 cm are given for the absolute values of the components of n and U ,

respectively. Moderately large upper bounds should be given for the components of n and U so as to

Fig. 4. A column-type 20-bar plane truss.
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exclude deformation above possible local maxima of the bifurcation path in the process of optimization,
even if those constraints are inactive at the optimal solution.

4.1. A column-type truss

Consider the column-type truss without springs; i.e. j ¼ 0: The critical load factor of the perfect system
is 3.9366, where the buckling mode is antisymmetric with respect to the y-axis and the critical point is a
symmetric bifurcation point.
We first investigate imperfection sensitivity of the maximum load factor in the directions of UA and US,

respectively, which are as shown in Fig. 5(a) and (b). Note that the imperfection mode Dp of the nodal loads
is also considered in the same directions as the nodal imperfections, where Dp is scaled so that its maximum
absolute value is equal to 1% of p. Fig. 6 shows the relation between the horizontal displacement d of node 8
and the load factor for three cases of perfect and imperfect systems in the direction of UA with ~eeðnÞ ¼ 1:0
and 5.0 cm. It is observed from Fig. 6 that K slightly increases along the bifurcation path, and the critical
point of the perfect system is a stable symmetric bifurcation point. Fig. 7 shows the relation between d and
K for three cases of perfect and imperfect systems for minor imperfection corresponding to US with
~eeðnÞ ¼ 1:0 and 5.0 cm.
Suppose the maximum load factor KM is defined by the displacement constraint d6 �dd. It may be ob-

served from Figs. 6 and 7 that the reduction of KM due to a major imperfection is larger than that to a
minor imperfection if �dd is small, but a minor imperfection dominates if �dd is sufficiently large. For instance, if
~eeðnÞ ¼ 5:0 cm, reduction in the direction of US is larger than that of UA in the range d > 179 cm. The
important property observed in Fig. 7 is that the magnitude of reduction of KM does not strongly depend

Fig. 5. Lowest symmetric and antisymmetric linear buckling modes of the column-type truss: (a) antisymmetric mode and (b) sym-

metric mode.
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on the value of �dd. Therefore, the most critical mode of minor imperfection may be successfully obtained by
solving P2 considering only the bifurcation load factor.
The minimum value of K of P2 for ~eeðnÞ6�ee ¼ 5:0 cm is 2.6693 which is about 68% of Kc ¼ 3:9366 of the

perfect system. The most critical mode of nodal imperfection nM is symmetric as shown in Fig. 8(a), where
the initial value for n has been given as US. The displacements and load factor at buckling of the perfect
system have been assigned to the initial values of U and K, respectively. Most critical imperfections of nodal
locations and nodal loads are also listed in Table 1. It is observed from Table 1 that all the components of
Dp are equal to the upper or lower bound.
The number of optimization steps, CPU time and the optimal objective value are as listed in the first row

of Table 2. Note that Kc of the imperfect system corresponding to ~eeðnÞ ¼ 5:0 cm in the direction of US

is 3.4747 which is larger than that for nM. Therefore, US cannot be used as an approximation for nM.
Although the number of steps is considerably large, an almost optimal solution has been found within
30 steps. The relation between d and K for the most critical case is also plotted in Fig. 7.
Since the structure and loading conditions considered here have obvious symmetry properties, it is very

easy to divide n and U into symmetric and antisymmetric components. If we consider only symmetric
components of n and U , the maximum load factor of the symmetric system is 2.6693 which agrees within
the accuracy of five digits with the value obtained by the formulation including asymmetric imperfections
and deformations. The mean absolute value of deviation of nM from those of the symmetric system is

Fig. 6. Relation between d and K for perfect and imperfect systems of the column-type truss in the direction of UA.

Fig. 7. Relation between d and K for perfect and imperfect systems of the column-type truss in the direction of US.
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4:3335
 10�3 which is very small compared to the maximum absolute value 13.7810 of nM. The compu-
tational cost is reduced as shown in the second row of Table 2 if we consider only symmetric imperfections
and deformations.

Fig. 8. Most critical modes of imperfection: (a) column-type truss and (b) laterally supported truss.

Table 1

Most critical imperfections of nodal locations and nodal loads

Node Direction Location (cm) Load ðDpi=pÞ
1 x 13.781 0.01

y �0.22715 �0.01
2 x �13.783 �0.01

y �0.22766 �0.01
3 x 2.9410 0.01

y 0.22275 �0.01
4 x �2.9375 �0.01

y 0.22211 �0.01
5 x 0.68235 0.01

y 0.013910 �0.01
6 x �0.68769 �0.01

y 0.011772 �0.01
7 x �0.049643 0.01

y 0.91936 �0.01
8 x 0.049153 �0.01

y 0.91907 �0.01
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If we do not exclude major imperfections and the initial values of all the components of nodal imper-
fections and nodal displacements are equal to 0.1 which are not symmetric, the deviation from the sym-
metric solution increases to 3:4390
 10�2, but the deviation is still very small. The number of steps and
CPU time for this case are listed in the third row of Table 2. Note that the computational cost is smaller
than that from the symmetric initial solution. Therefore, symmetricity of initial solution does not always
lead to reduction of computational cost, but usually leads to a rigorously symmetric solution. It should be
noted that the optimal objective values are same up to five digits for several cases we tested from different
initial solutions.
The maximum load factor obtained by linearizing the equilibrium equation (11) with respect to U is

2.6864. Therefore, the prebuckling deformation may be neglected for the column-type truss as this example.
The convergence property, however, does not improve as the result of neglecting the geometrical nonlin-
earity as observed from the fourth row of Table 2. In general cases including dome-type structures, pre-
buckling deformation cannot be neglected, and the geometrically nonlinear formulation presented in this
paper should be used.
Problem P1 has been directly solved for comparison purpose, where path-following analysis is to be

carried out to evaluate the bifurcation load factor at each step of optimization. Only symmetric imper-
fections are considered. If asymmetric imperfection exists, the bifurcation point disappears and the opti-
mization process obviously does not converge. Finite difference method has been used for sensitivity
analysis, and the equilibrium path is traced by the displacement increment method. The computational
results are listed in the last row of Table 2 which should be compared to the second row because only
symmetric imperfections are considered here. It is observed from Table 2 that computational cost for P1 is
very large compared to that for P2. Computational cost, however, strongly depends on the methods of
path-following analysis and optimization. The ratio of CPU time for P1 to that of P2 will be different if
analytical sensitivity analysis is used instead of finite difference approach. However, the cost for evaluating
the constraint functions for P2 is very small because the equivalent nodal loads are obtained by an algebraic
computation and k1 is computed by carrying out eigenvalue analysis only once which is not costly com-
pared to the path-following analysis. Since imperfections on p are also considered in P1, the number of
variables for P1 and P2 for this case are 32 and 33, respectively, which are almost same. Therefore, it can be
concluded that the computational cost for P2 is generally smaller than that for P1.

4.2. A laterally supported truss

Consider next a laterally supported truss with j ¼ 102:9 kN/m. The ratio of the extensional stiffness of
the spring to that of the horizontal truss member is 0.005. The buckling load factor of the perfect system is
15.497, where the buckling mode is antisymmetric with respect to y-axis. Therefore the critical point is a
symmetric bifurcation point.
Fig. 9 shows the relation between d and K for three cases of perfect and imperfect systems corresponding

to a major imperfection UA with ~eeðnÞ ¼ 1:0 and 5.0 cm. It is seen from Fig. 9 that the critical point of the
perfect system is a stable bifurcation point, and the critical point of imperfect systems are limit points that

Table 2

Number of iteration steps, CPU time and the objective value for the column-type truss

Number of steps CPU time (s) Objective value

Symmetric initial solution 38 36.8 2.6693

Symmetric imperfection 14 6.7 2.6693

Asymmetric initial solution 27 25.2 2.6693

Linear strain 29 26.5 2.6864

Incremental analysis 67 54.2 2.6708
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are far above the bifurcation point. Note that the reduction of KM is very small for ~eeðnÞ ¼ 1:0 cm in the
moderately large range of displacement. Variation of k1 with respect to K for ~eeðnÞ ¼ 1:0 cm is as shown in
Fig. 10. The lowest eigenvalue has a local minimum near the bifurcation point, but increases to positive
values before reaching 0 at the limit point.
Fig. 11 shows the relation between d and K for three cases of perfect and imperfect systems for minor

imperfection in the direction of US with ~eeðnÞ ¼ 1:0 and 5.0 cm. The equilibrium paths are plotted up to the
second and first critical point, respectively, for perfect and imperfect systems. Note that the bifurcation load
factor for ~eeðnÞ ¼ 5:0 cm is 14.107, where imperfection in nodal loads are also considered in the direction of
US.
The optimal value of K obtained by solving P2 for ~eeðnÞ6�ee ¼ 5:0 cm is 12.483 which is about 81% of

Kc ¼ 15:497 of the perfect system, where the initial value for n has been given as US. The displacements and
load factor at buckling of the perfect system have been assigned to the initial values of U and K, respec-
tively. The relation between d and K for nM which is symmetric as shown in Fig. 8(b) is also plotted in Fig.
9. In this case the reduction of Kc due to the most critical imperfection is much larger than that to the
imperfection with the same norm in the direction of US. Note from Fig. 8(a) and (b) that nM strongly
depends on the extensional stiffness of the spring.
If we consider only symmetric components for n and U , the maximum load factor of symmetric system is

12.483 which agrees within the accuracy of five digits with the value obtained by the formulation including

Fig. 10. Relation between load factor and the lowest eigenvalue with ~eeðnÞ ¼ 1:0 cm.

Fig. 9. Relation between d and K for perfect and imperfect systems of the laterally supported truss in the direction of UA.
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asymmetric imperfections and deformations. The mean absolute value of deviation of nM from the most
critical imperfection mode of the symmetric system is 2:0182
 10�2 which is very small compared to the
maximum absolute value 13.7810 of nM. If we start from a nonsymmetric initial values such that all the
components of n and U are equal to 0.1, the deviation increases to 6:5855
 10�2 which is still a small value.
The maximum load factor for linear case is 12.863. Also for this case, convergence property did not im-
prove as a result of neglecting the effect of prebuckling deformation.

5. Conclusions

A simple and computationally inexpensive approach has been presented for obtaining the maximum
load factor of an elastic structure that has a stable bifurcation point if no initial imperfection exists. In the
proposed method, an antioptimization problem is first formulated for minimizing the load factor within the
convex region of possible imperfections. The problem is then relaxed and reformulated by using the SAND
as well as the energy based approach to obtain the most critical minor imperfection and the corresponding
bifurcation load factor also considering the imperfection in nodal loads. The bifurcation load factor is
located as a minimum value of the load factor with respect to the major imperfections under constraint on
the lowest eigenvalue of the stability matrix. The variables of the problem are the imperfection parameters,
nodal displacements and the load factor, and laborious nonlinear analysis for tracing equilibrium path is
avoided.
The equilibrium paths of perfect and imperfect systems have been investigated for a 20-bar column-type

truss with and without lateral springs considering major and minor imperfections of various magnitudes. It
has been shown for a flexible structure allowing moderately large displacements that the antisymmetric
linear buckling mode cannot always be the most critical mode of imperfection and that a minor imper-
fection is very important for estimating the reduction of the maximum load factor defined by the dis-
placement constraints. It has also been shown that the reduction of the maximum load factor defined by the
displacement constraints does not strongly depend on the value of the upper bound of displacement if
a minor imperfection is considered. The possibility of reaching the bifurcation point that leads to sudden
dynamic antisymmetric deformation should also be avoided in practical situation. Therefore it is reasonable
to define the most critical mode of imperfection in the direction of symmetric minor imperfection for a
flexible structure allowing moderately large deformation.
The most critical minor imperfection has been shown to be successfully obtained by solving the proposed

antioptimization problem using an appropriate nonlinear programming algorithm. The antioptimal solu-

Fig. 11. Relation between d and K for perfect and imperfect systems of the laterally supported truss in the direction of US.
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tions have been found under several problem settings, and it has been confirmed that the proposed method
has advantages over the method with path-following analysis in view of computational cost and conver-
gence property.
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